50=-4.9t^2+147

Simple and best practice solution for 50=-4.9t^2+147 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50=-4.9t^2+147 equation:



50=-4.9t^2+147
We move all terms to the left:
50-(-4.9t^2+147)=0
We get rid of parentheses
4.9t^2-147+50=0
We add all the numbers together, and all the variables
4.9t^2-97=0
a = 4.9; b = 0; c = -97;
Δ = b2-4ac
Δ = 02-4·4.9·(-97)
Δ = 1901.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{1901.2}}{2*4.9}=\frac{0-\sqrt{1901.2}}{9.8} =-\frac{\sqrt{}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{1901.2}}{2*4.9}=\frac{0+\sqrt{1901.2}}{9.8} =\frac{\sqrt{}}{9.8} $

See similar equations:

| 4y-2+4=2y+4 | | 18-7x+7x=8x+2 | | 64=4(5e+1) | | 200+(50x)-(100(80x))=0 | | 1+x=13+3x | | 4m^2-5m=-3 | | 12x+40+8x+80=180 | | x+11/5x=384 | | 12x+40=12x+40 | | 11x+6=-9x+66 | | -3(3d-6)=63 | | -6x+8=-8x-14 | | 3x-9=-7x-39 | | 8x+4=2*x-2 | | 2x-5=-9x-27 | | 0.25a+0.3a+8=22 | | 11=a/8+9 | | 1=15w | | 200+(50x)=100(80x) | | 2/3x1/51+15=49 | | 4x+12-9x=15-15x+10x-3 | | 102=6(5-6u) | | m÷0.19=12 | | 25x-5-13x+4=20x-3-10x+14 | | 23x-5-13x=20x-3-10x+14 | | 2/3y+15=49 | | .5x+5=23 | | x+1/3x+x=98 | | -9-8t=-73 | | 64x+25x=350+25x | | |x-3|+14=7 | | -3x(6-2)-(8)=0 |

Equations solver categories